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ABSTRACT 

A more complete knowledge of the chemical p r o f i l e  
of the s o l a r  wind would revea l  more c l e a r l y  the na tu re  of 
the  high energy nuc lea r  processes tak ing  p lace  on the 
su r face  of the sun. 

An instrument  f o r  s a t e l l i t e s  o r  space probes i s  
descr ibed  which w i l l  measure the r e l a t i v e  abundance i n  
the s o l a r  wind of t he  hydrogen i so tope ,  deuterium and 
poss ib ly  of the helium isotope,  He3. 
the r e l a t i v e  abundances of c e r t a i n  l i g h t  p o s i t i v e  ions  
by measuring the charge-spectrum of the solar wind up 
through a p o s i t i v e  charge of about e i g h t  times the 
proton charge.  

It  w i l l  a l s o  revea l  

A l abo ra to ry  model of the instrument  i s  descr ibed .  
The r e s u l t s  of prel iminary tes ts  i n  vacuum show the 
conceDts t o  be f e a s i b l e .  The r e s u l t s  of' these tes t s  
are d iscussed  and suggestions are made f o r  f u r t h e r  
development of t he  instrument.  

Thesis Supervisor:  Frank Scherb 
T i t l e :  Ass i s t an t  Professor of Physics 
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Chapter I: In t roduc t ion  

1.1 Background 

The i n t e r p l a n e t a r y  plasma, or s o l a r  wind, as i t  i s  

va r ious ly  c a l l e d ,  i s  the n e u t r a l  plasma which streams 

cont inuously outward from the  sun. It i s  a c t u a l l y  a 

cont inua t ion  of the  solar atmosphere o r  corona. I ts  

ex i s t ence  has been experimental ly  confirmed by s e v e r a l  

satell i tes,  including the Mariner I1 space probe on 

i t s  f l i g h t  t o  Venus. Since then much e f f o r t  has been 

spent  i n  s tudying i t s  na tu re  i n  more de ta i l .  Severa l  

instruments  have inves t iga t ed  the  t o t a l  f l u x  as a func- 

t i o n  of energy f o r  b o t h  p o s i t i v e  and negat ive  p a r t i c l e s ,  

bu t  no one has y e t  a t tempted t o  probe i n t o  t he  composition 

of the  plasma. O f  course the  v a s t  major i ty  of the  

p o s i t i v e  ions  are probably protons and the Mariner I1 

r e s u l t s  ( S 4 )  i n d i c a t e  t h a t  there may be as much as t e n  

percent  of helium present ,  bu t  beyond t h i s  almost nothing 

i s  known about the chemical p r o f i l e  of t he  plasma. 

I so topes  o the r  than H1 and H e 4  are a l m o s t  c e r t a i n l y  

p r e s e n t  i n  r e l a t i v e l y  s r ~ l ?  qumt i t ies  (S3). 

complete knowledge of which elements and i so topes  are 

p r e s e n t  i n  the plasma and t h e i r  r e l a t i v e  abundances 

would shed considerable  l i g h t  on many important as t ro-  . 

phys ica l  problems concerning s te l la r  processes  i n  gene ra l  

and i n  p a r t i c u l a r  about our  own sun. 

A more 
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T h i s  t h e s i s  w i l l  mainly be concerned with d e t e c t i n g  

the  hydrogen i so tope ,  deuterium ( D ) .  An experiment has 

been proposed by D r .  F. Scherb of t he  M.I.T. Laboratory 

f o r  Nuclear Science by which the r e l a t i v e  abundance of 

D and poss ib ly  of He3 can be measured and by which the 

charge spectrum of the plasma can be determined up t o  a 

p o s i t i v e  charge of about e ight  times the pro ton  charge.  

A l abora tory  model of t h i s  experiment was cons t ruc t ed  

and tested i n  a s imulated space environment. Resu l t s  

of these pre l iminary  tests i n d i c a t e  that  the technique 

i s  feasible. While the experiment p r e s e n t s  some unusual 

engineering problems, the work done s o  far  has shown 

that these  are c e r t a i n l y  surmountable and should n o t  

unduly delay the development of a workable f l i g h t  

model once the p r o j e c t  i s  undertaken. The cons t ruc t ion  

of the l abora to ry  model of the experiment w i l l  be 

descr ibed i n  d e t a i l  i n  hope tha t  some of the techniques 

which g radua l ly  evolved from the process  of t r i a l  and 

error w i l l  be of use t o  those  who cont inue the development 

of t h i s  f i r s t  p r i m i t i v e  model i n t o  an instrument  s u i t a b l e  

f o r  space f l i g h t .  

The procedures followed i n  t e s t i n g  the model are 

a l s o  descr ibed.  These tes ts  were done f i r s t  t o  determine 

whether o r  no t  the concepts were even workable and then 

t o  begin accumulating the data and experience upon which 

a reasonable design and set of s p e c i f i c a t i o n s  f o r  an 

a c t u a l  instrument could be based. 
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1.2 Rela t ive  Abundance of the  Elements 

T r a d i t i o n a l l y  there have been three methods f o r  

s tudying the r e l a t i v e  abundance of the d i f f e r e n t  elements 

i n  the universe:  (1) d i r e c t  chemical a n a l y s i s  of ter-  

restrial  and m e t e o r i t i c  material, ( 2 )  a n a l y s i s  of cosmic 

rays,  and ( 3 )  spec t roscopic  a n a l y s i s  of r a d i a t i o n  from 

stars ( e s p e c i a l l y  the sun) and nebulae.  Recently the 

techniques of r a d i o  astronomy have a l s o  been used i n  

i n v e s t i g a t i o n  of element abundances. 

The i so tope  deuterium has been observed only on 

earth and i n  m e t e o r i t i c  material where i t s  abundance 

r e l a t i v e  t o  ord inary  hydrogen I s  about 1 . 4  x 

There have been a number of a t tempts  t o  d e t e c t  the 

presence of deuterium on the s o l a r  su r f ace  based on the 

i so tope  s h i f t  i n  the s p e c t r a l  l i n e s  of deuterium r e l a t i v e  

t o  hydrogen (S3), p a r t i c u l a r l y  i n  the Da l i n e  which, 
0 0 

a t  6561~, is  1.8~ on the blue side of the H a  l i n e .  The 

r e s u l t  that  deuterium was not observed i n  these inves-  

t i g a t i o n s  places an upper l i m i t  of about on i t s  

abundance r e l a t i v e  t o  hydrogen. Kinman ( K l )  r epo r t ed  

t h t  h i s  i n v e s t i g a t i o n  would have de tec t ed  deuterium i f  

i t s  r e l a t i v e  abundance had exceeded 4 x 

The a c t u a l  abundance of deuterium on the s o l a r  

su r f ace  may w e l l  be much less than t h i s .  It i s  cont in-  

uously produced ( in  the core of the sun by the thermo- 

nuc lea r  r eac t ion ,  

p + p - D + 13' + v (1-1) 



b u t  I s  a l s o  consumed by the much more rap id  r e a c t i o n ,  

(1-2)  3 D + p - H e  + y  

s o  tha t  i t s  r e l a t i v e  abundance i n  the s o l a r  core  is only 

about lo-’? 

Based on equ i l ib r ium thermonuclear r e a c t i o n s  only, 

an estimate of the r e l a t i v e  abundance of deuterium on 

the solar su r face  could range from the abundance 

i n  the solar  core,  t o  an unce r t a in  upper l i m i t  of about 

s l i g h t l y  less than  i t s  abundance on earth. 

If deuterium were p r e s e n t  on the su r face  of the 

sun, then convect ive c i r c u l a t i o n  would probably c a r r y  

i t  down t o  a depth where the temperature i s  high enough 

f o r  r eac t ion  (1-2)  t o  occur. Greenstein and Richardson ( G 3 )  

estimated the temperature a t  the bottom of the convection 

zone t o  be between 2 x and 3 x 10-60K. 

based on the observa t ion  ( G 4 )  that  the r e l a t i v e  abundance 

of beryl l ium on the sun is  about the same as on earth 

whereas that of l i t h i u m  i s  lower by a f a c t o r  of 50. If 

the o r i g i n a l  abundance of deuterium on the s o l a r  su r f ace  

were comparable t o  that  p r e s e n t l y  on earth (1 .4  x loe4), 

then  a temperature of only 0.54 x 10 O K  (S2) would be 

s u f f i c i e n t  t o  have completely des t royed  i t  by r e a c t i o n  

This was 

6 

(1-2)  within the estimated lifetime of the sun ( 5  x 10 9 y r s ) ,  

s o  t h i s  evidence i n d i c a t e s  that  deuterium should be 

e s s e n t i a l l y  nonexis ten t  on the solar s u r f a c e  i f  there 

has been no product ion of more deuterium on the su r face  
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s i n c e  the sun formed. The f a c t  that there i s  some 

l i t h i u m  remaining on the surface,  however, i n d i c a t e s  

that  the convective process  may be r e l a t i v e l y  slow. 

Greensteln and Richardson ( G 3 )  estimate that  the 

c h a r a c t e r i s t i c  time f o r  ma te r i a l  t o  c i r c u l a t e  i n  the 
8 convective reg ion  is 7 x 10 years  o r  one seventh of the 

estimated l i fe t ime of the sun. P.  Morrison ( W ) ,  however, 

has commented that  while convection undoubtedly exists,  

i t s  rate i s  n o t  known as i t  i s  probably inf luenced  by 

subsurface magnetic f i e l d s  about which l i t t l e  i s  known. 

The p resen t  evidence, however, seems t o  i n d i c a t e  that  

any deuterium p resen t  when the sun was formed has long 

s i n c e  been consumed t o  produce He 3 

These cons ide ra t ions  r e f l e c t  on the l a r g e r  astro- 

phys ica l  problem of the r e l a t i v e  abundances of the nuc lea r  

s p e c i e s  D, L i ,  Be, and B which are a l l  produced i n  s t e l l a r  

thermonuclear r eac t ions ,  bu t  which are qu ick ly  consumed 

by f u r t h e r  r e a c t i o n s  s o  that their  observed abundances 

i n  the universe  cannot be explained i n  terms of thermal 

processes ,  a l though these processes  are thought t o  account 

f o r  the observed abundmces of many of the other elements ( B 3 ) .  

Burbidge, e t  al. (B3) have considered the  p o s s i b i l i t y  

that  f lare  a c t i v i t y  may provide the necessary nonthermal 

processes  by bombarding the s te l la r  su r faces  with high- 

energy p a r t i c l e s  lead ing  t o  the formation of D, Li, Be, 

and B through s p a l l a t i o n  of heav ie r  elements, o r  by 

10 



neutron Capture. Indeed, Goldberg e t  al. (Gl) r e p o r t e d  

tha t  spec t roscopic  observat ion of a s o l a r  f lare  which 

occurred on February 10, 1956, i n d i c a t e d  a p o s s i b l e  

deuterium concent ra t ion  of 5 t o  lo$ al though t h i s  r e s u l t  

was no t  confirmed by o t h e r  observers .  

Fowler, Greenstein,  and Hoyle (Fl) suggest  t ha t  

D, L i ,  Be, and B i n  the i n n e r  s o l a r  system may be the 

r e s i d u a l  products  of l a r g e  scale f la re  a c t i v i t y  during 

the e a r l y  h i s t o r y  of the sun. I n  t he i r  theory  the 

l o c a l  abundances of these i so topes  r e f l e c t  only on the 

h i s t o r y  of the s o l a r  system and may be q u i t e  d i f f e r e n t  

from any "un ive r sa l "  abundance f o r  the galaxy.  

Heller (Hl) considered the product ion of D by 

supernovae explosions.  H e  concluded that under c e r t a i n  

condi t ions enough D could be produced and preserved 

i n  a l o c a l i z e d  reg ion  t o  account f o r  i t s  observed 

r e l a t i v e  abundance on earth, bu t  h i s  theory would 

no t  expla in  t h i s  same abundance throughout the galaxy.  

- 1 . 3  The S o l a r  Wind 

Recent observa t ions  of t h e  s o l a r  wind show a 
8 p a r t i c l e  f l u x  of s e v e r a l  times 10 p a r t i c l e s  cm-2sec-1 

and an average v e l o c i t y  ranging from 300 t o  800 km sec-' ( S 4 ) .  

S a t e l l i t e s  and space probes now o f f e r  a means, as y e t  

unexploited,  f o r  ob ta in ing  informat ion  on the r e l a t i v e  

abundance of elements on the su r face  of the sun through 

a n a l y s i s  of the  s o l a r  wind. 

11 



One technique for analyzing the constituents of 

the solar wind would be the use of electric and/or 

magnetic fields in a spectrometer or time-of-flight 

configuration. Aside from problems of size and weight 

of the apparatus, this technique has the disadvantage 

that it is sensitive only to the ratio of charge-to-mass. 

It would be very difficult to build an instrument 

suitable for space application which would resolve, 

for instance, D+ and He* whose charge-to-mass ratios 

differ by only 0.7%. 

It is desirable to distinguish D+ from the other 

components of the solar wind because of its direct 

bearing on the astrophysical questions mentioned in 

the last section. The techniques described here will 

allow an accurate determination of the relative abundance 

of deuterium in the solar wind if the abundance exceeds 

about low5 and, by means of a charge spectrum analysis, 
will provide considerable insight into the relative 

abundances of other light elements in the solar wind. 
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Chapter 11 : The Proposed Experiment - 
2 . 1  Deuterium Detector  

The technique proposed f o r  d e t e c t i n g  t h e  presence 

of deuterium i n  the s o l a r  plasma makes use of the 

P e x o e r g i c  nuc lear  r e a c t i o n  between deuterium and t r i t i u m ,  

( 2 . 1 )  
4 D + T -He + n + 17.6 M e V .  

The r e s u l t i n g  alpha p a r t i c l e  and neutron have unique 

ene rg ie s  of 3.6 and 1 4  Mev re spec t ive ly .  The c r o s s -  

s e c t i o n  f o r  t h i s  r eac t ion ,  p l o t t e d  as a func t ion  of 

deuteron energy i n  Fig.  1, has a s t rong  resonance a t  

a deuteron bombarding energy of about 100 Kev .  

The proposed instrument would sample the s o l a r  

plasma through an entrance g r i d  several inches i n  diameter. 

Upon passing through t h i s  g r id ,  t h e  p o s i t i v e  ions  i n  the 

plasma would be a c c e l e r a t e d  through a p o t e n t i a l  d i f f e r e n c e  

of about 100 k i l o v o l t s  and focused upon a t r i t i a t e d  

target  of the  type commonly used for producing neutrons 

by the above r eac t ion .  A c e r t a i n  percentage of the D+ 

i ons  would prnduce 3.6 Mev alpha p a r t i c l e s  by r e a c t i o n  

( 2 . 1 ) .  

i i id ica ies  the aiiiount of d c u t e r i m  = r e s e n t  i n  the plasma. 

The a lpha  p a r t i c l e s  are i n  t h e  range of energy tha t  can 

be de t ec t ed  very  conveniently by a s o l i d  s t a t e  r a d i a t i o n  

d e t e c t o r  l oca t ed  immediately ad jacent  t o  the target .  

Being p r a c t i c a l l y  monoenergetic, they would pe rmi t  

rather s t rong  d iscr imina t ion  a g a i n s t  extraneous events .  

A measurement of the a lpha  production r a t e  then 



. 

A d e t e c t o r  of the su r face  barrier type would be the most 

s u i t a b i e  for t h i s  a p p l i c a t i o n .  

An estimate of the counting ra te  obta ined  by t h i s  

technique can be made from the d a t a  publ ished by 

Gunnersen and James ( G 5 ) ,  who measured the e f f i c i e n c y  

of r eac t ion  ( 2 . 1 )  i n  t i t an ium t r i t i d e  targets. Using a 

t y p i c a l  target w i t h  1.5 t r i t i u m  atoms per t i t an ium atom, 

they obtained y i e l d s  of 1 x los6 H e  

of deuteron energy and 2 . 5  x 10 H e  per D a t  100 Kev. 

4 per D a t  80 Kev 
-6 4 

Assuming a s o l a r  wind p o s i t i v e  ion  f l u x  of 5 x 10 

p a r t i c l e s  cm-*sec-’ (S4 ) ,  a deuterium r e l a t i v e  abundance 

of and an  en t rance  g r i d  of 100 cm , the correspond- 

ing  alpha production rates are 1.1 s e c - l  a t  100 Kev and 

2 

0.7 sec- l  a t  80 Kev. 

s o l i d  s t a t e  d e t e c t o r s ,  probably 30 percent  of these 

alphas could be de t ec t ed .  

By c a r e f u l  placement of one or more 

2 . 2  Sources of Natura l  Background 

The estimate i n  the las t  s e c t i o n  i n d i c a t e s  tha t  a n  

instrument of t h i s  type w i l l  have, a t  best ,  a count ing 

r a t e  of a few counts per second. I t s  s e n s i t i v i t y  w i l l  

be determined almost e n t i r e l y  by the background counting 

ra te .  

A survey was conducted of o t h e r  i o n s  p o s s i b l y  

e x i s t i n g  i n  the s o l a r  plasma t o  determine i f  any of them 

could cause an ambiguity by product ing  even t s  i n  the 
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target which could be confused with the deuterium- 

t r i t i u m  events .  One poss ib l e  source of t roub le  i s  the 
3 

i so tope ,  H e  , which may be present  due t o  the rapid 

conversion of deuterium t o  H e 3  i n  the sun by r e a c t i o n  

( 1 . 2 ) .  

p o s s i b l e  f i n a l  s ta tes :  

(43%)  

(51%) 

The r e a c t i o n  between He3 and t r i t i u m  has three 

He3 + T 4 H e 4  + D + 14.3 Mev 

He3 + T - H e  4 + n + p + 1 2 . 1  Mev 

(2 .2a )  

(2 .2b )  

( 6%) He3 + T -+ ( 2 . 2 c )  

The t o t a l  c ros s  s e c t i o n  f o r  the He’-tritium r e a c t i o n  

i s  shown i n  comparison w i t h  the D-T c ros s  s e c t i o n  i n  

F ig .  1. It i s  seen t o  be smaller by a f a c t o r  of 1000 

than the deuter ium-tr i t ium cross s e c t i o n .  

Reaction (2 .2a )  produces deuterons and alphas wi th  

d i s c r e t e  energ ies  of 9.55 Mev and 4.75 Mev r e s p e c t i v e l y .  

These should be e a s i l y  d i s t ingu i shab le  f rom the 3.6 Mev 

alphas due t o  deuterium. Indeed, t h i s  r e a c t i o n  can be 

regarded as a means f o r  measuring the abundance of H e 3  i n  

the  s o l a r  wind. Because of i t s  r e l a t i v e l y  small r e a c t i o n  

c r o s s  sec t ion ,  H e  would have t o  be p re sen t  i n  an abundance 3 

1000 times greater than t h a t  of deuterium t o  produce a 

comparable counting rate.  Such a high r e l a t i v e  abundance 

of He’ cannot be ru l ed  out a t  p re sen t .  

information on i t s  abundance on the sun i s  due t o  

Greenstein who searched f o r  evidence of it i n  the  s o l a r  

The only a v a i l a b l e  



spectrum. H e  d i d  n o t  f i n d  a p o s i t i v e  i n d i c a t i o n  of t h e  

presence of He3  and p laced  an upper l i m i t  of 2% on i t s  

abundance r e l a t i v e  t o  He (G2). 4 

Reactions (2 .2b )  and ( 2 . 2 ~ )  are p o t e n t i a l l y  a more 

se r ious  source of background than r e a c t i o n  (2 .2a )  

, because they produce a lphas  and protons which do n o t  

have unique ene rg ie s .  Some of t hese  p a r t i c l e s  could 

then have t h e  same energy as the deuterium-produced 

alphas.  I f  t he  abundance of He3  i s  determined from 

r e a c t i o n  (2 .2a) ,  however, a s t a t i s t i c a l  c o r r e c t i o n  can 

be made i n  the da t a  t o  account f o r  the background due 

t o  r eac t ions  (2.2b)and ( 2 . 2 ~ ) .  It  should be p o s s i b l e  

t o  d i s t i n g u i s h  f u r t h e r  between the deuterium r e a c t i o n s  

and the H e 3  r e a c t i o n s  by s tudying the counting ra te  as 

a funct ion of a c c e l e r a t i n g  p o t e n t i a l .  The deuterium- 

t r i t i u m  c ross  s e c t i o n  i n c r e a s e s  by only t e n  pe rcen t  from 

90 t o  110 Kev while tha t  of the He3-tri t ium r e a c t i o n  

increases  by a f a c t o r  of two. I n  f a c t ,  f o r  v o l t a g e s  

above 100 Kv the  energy dependence of t h e  He’-tritium 

r e a c t i o n  i s  q u i t e  d i f f e r e n t  from t h a t  of the deuterium- 

t r i t i u m  r eac t ion  (see Fig.  1). 

The t r i t i u m  t a r g e t  i t s e l f  i s  another  p o t e n t i a l  

source of background which must be i n v e s t i g a t e d .  The 

amount of t r i t i u m  i s  such tha t  there w i l l  be about 

lolo be ta  d i s i n t e g r a t i o n s  per Second and p o s s i b l y  as 
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many as lo5 bremsstrahlung x-rays p e r  second. The 

ind iv idua l  events  would be i n s i g n i f i c a n t ,  bu t  there i s  

a p o s s i b i l i t y  of false counts due t o  p i le -up .  The 

pre l iminary  l abora to ry  r e s u l t s  show t h a t  the  target  

a c t i v i t y  does cause a s l ight  decrease i n  r e so lu t ion ,  

bu t  a false event  due t o  p i l e  up has never been observed. 

Consequently, the  target  a c t i v i t y  does no t  appear a t  

t h i s  time to be a se r ious  problem. 

Cosmic rays are another  source of background, bu t  

t h e i r  e f f e c t  on t h i s  type of instrument  i s  d i f f i c u l t  

to estimate. Since s o l a r  f l a r e s  occas iona l ly  are 

copious sources  of high energy p a r t i c l e s  ( S 3 ) ,  

measurements of deuteron f luxes  made during and a f t e r  

such events  w i l l  be very valuable  due to the poss ib l e  

product ion of deuterium on the s o l a r  sur face  by such 

f la re  a c t i v i t y .  After a t e n t a t i v e  design has been 

chosen for the  instrument package, i t  w i l l  be necessary 

t o  i n v e s t i g a t e  f u r t h e r  t h e  background e f f e c t  of high 

energy f lare  p a r t i c l e s  i nc iden t  on t h e  space v e h i c l e .  

I n  many f l a r e  events  t h e  high-energy p a r t i c l e  f l u x  

r e t ~ r n s  almost t o  pre-flare l e v e l s  before  the bulk  of 

the low energy plasma p a r t i c l e s  reach  the  v i c i n i t y  of 

the e a r t h ' s  o r b i t  (S3)  (B4). For these events  the s o l a r  

plasma as soc ia t ed  with a f l a r e  may be analyzed f o r  

deuterium a f t e r  the energe t ic  p a r t i c l e  f l u x  has subsided. 



2 .3  Charge Spectrum Analysis  of the  Plasma 

I n  a d d i t i o n  t o  the d e t e c t i o n  of deuterium and t h e  
3 poss ib le  d e t e c t i o n  of He , the 100 k i l o v o l t  a c c e l e r a t i n g  

p o t e n t i a l  makes i t  poss ib l e ,  with only a small i n c r e a s e  

i n  instrumental  complexity, t o  measure the r e l a t i v e  

amounts of c e r t a i n  p o s i t i v e  ions .  T h i s  can be done by 

adding another  s o l i d  state d e t e c t o r  a t  the negat ive  

100 k i l o v o l t  p o t e n t i a l .  

a small sample of the f l u x  of incoming p a r t i c l e s  would 

f a l l  upon i t s  s e n s i t i v e  s u r f a c e .  Each of these p a r t i c l e s  

would produce a s i g n a l  p ropor t iona l  t o  i t s  t o t a l  k i n e t i c  

energy. 

t o  have an average v e l o c i t y  near  the observed bulk 

v e l o c i t y  f o r  the plasma which i s  300 t o  8 G 0  Km s e c - l  (S4 ) ,  

then  (neg lec t ing  t h e  comparatively small thermal v e l o c i t i e s )  

the average k i n e t i c  energy per p a r t i c l e  would be between 

0.5 and 4 Kev f o r  protons,  2 t o  16 Kev f o r  H e  , and 

4 t o  32 Kev f o r  oxygen. 

It would be pos i t i oned  s o  that  

If a l l  i ons  p re sen t  i n  the s o l a r  wind are assumed 

4 

The a d d i t i o n a l  energy imparted t o  a p o s i t i v e  ion  by 

t h e  100 k i l o v o l t  p o t e n t i a l  i s  p ropor t iona l  t o  the  charge 

of the i o n  and should, i n  a l l  cases ,  be much greater than 

t h e  o r i g i n a l  energy of the  i o n  because there i s  reason 

t o  be l ieve  t h a t  a l l  of the l i g h t e r  elements p r e s e n t  i n  

the  plasma a r e  e s s e n t i a l l y  completely ion ized  (S3). 

Therefore each p a r t i c l e  reaching  the d e t e c t o r  w i l l  have 

an energy which i s  very n e a r l y  p ropor t iona l  t o  i t s  
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( p o s i t i v e )  charge.  Thus pulse h e i g h t  a n a l y s i s  of the 

d e t e c t o r  output  w i l l  r e v e a l  t h e  charge spectrum of the 

plasma. 

S o l i d  s ta te  d e t e c t o r s  a re  l i g h t - s e n s i t i v e  devices .  

Since the d e t e c t o r  f o r  charge spectrum a n a l y s i s  w i l l  be 

f a c i n g  i n t o  the l i n e  of f l i g h t  of the incoming p a r t i c l e s ,  

there i s ' n o  way t o  shield i t  a b s o l u t e l y  from s u n l i g h t  

a t  a l l  times un le s s  a d e f l e c t i o n  f i e l d  i s  used t o  bend 

the t r a j e c t o r y  of the p a r t i c l e s .  F i g . 2  , however, 

shows that the d e t e c t o r  need n o t  be f ac ing  i n  the 

d i r e c t i o n  of the sun t o  take data. Thus, by focus ing  

the  p a r t i c l e  beam through a small ape r tu re ,  t he  e f f e c t  

of s u n l i g h t  should be e s s e n t i a l l y  e l imina ted  except a t  

times when the  a t t i t u d e  of the spacec ra f t  i s  such that 

the  d e t e c t o r  i s  looking d i r e c t l y  a t  the sun, a t  which 

times the d e t e c t o r  can s i m p l y  be ga ted  o f f .  

With an average s o l a r  wind p a r t i c l e  f l u x  of s e v e r a l  
8 -1 times 10 p a r t i c l e s  sec  , t h e  only problem 

concerning t h e  counting r a t e  of t h e  charge spectrum 

analyzer  i s  t o  keep i t  from exceeding the s i g n a l  processing 

capac i ty  of the c i r c u i t s .  A desired counting ra te  should 

be r e a l i z a b l e  by proper geometric design and beam 

focusing.  

2 . 4  Instrument Design Factors - 
Figure 2 shows, i n  block diagram form, what the 

phys ica l  conf igu ra t ion  of t h e  instrument might be l i k e .  



Conceptually the  experiment i t se l f  is n o t  complicated. 

Cer ta in ly  the e l e c t r o n i c  ins t rumenta t ion  w i l l  n o t  be t o o  

complex as space experiments go, b u t  the h igh  vo l t age  

requi red  f o r  t h i s  experiment p l u s  the f a c t  that  i t  must 

be vacuum i n s u l a t e d  w i l l  make the s t r u c t u r a l  design 

qu i t e  a d i f f i c u l t  problem both  e l e c t r i c a l l y  and mechanically.  

Indeed, the high-voltage power supply and the heam 

focusing s t r u c t u r e  toge the r  w i l l  probably r e p r e s e n t  the 

ma jo r  p a r t  of the e f f o r t  r equ i r ed  t o  develop and b u i l d  

a workable model of the experiment. 

Another problem is tha t  of coupling the e l e c t r o n i c  

s i g n a l  out through the 100 Kv p o t e n t i a l  d i f f e r e n c e .  

Gallium a r sen ide  diodes were used t o  produce an amplitude- 

modulated i n f r a r e d  l i g h t  beam f o r  s i g n a l  coupling i n  the 

labora tory  model of the instrument  and i t  appears t h a t  

th i s  technique w i l l  provide a convenient s o l u t i o n  t o  

the s ignal-coupl ing problem i n  f u t u r e  models. 

Refer r ing  aga in  t o  Fig. 2, the  focus ing  f i e l d  i s  

formed by two concent r ic  metal  she l l s ,  each i n  the form 

of a hemisphere jo ined  t o  a cy l inde r .  The o u t e r  s h e l l  

is a t  sa te l l i t e  ground p o t e n t i a l  and con ta ins  the en t rance  

g r i d  i n  i t s  hemispherical  p o r t i o n .  

a t  a negat ive p o t e n t i a l  of about  100 k i l o v o l t s  with 

respec t  t o  s a t e l l i t e  ground. Upon e n t e r i n g  through 

the g r i d ,  the p o s i t i v e  Ions i n  the plasma are a c c e l e r a t e d  

and focused i n t o  a converging c o n i c a l  beam by the radial 

The i n n e r  s h e l l  is 
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e l e c t r i c  f i e l d  i n  the gap between the hemispherical  

su r f aces .  Upon reaching the  i n n e r  she l l ,  a f r a c t i o n  of 

t h e  p a r t i c l e s  pass through a g r i d  i n  i t s  hemispherical  

su r f ace  and converge t o  the center  of curva ture  of the  

hemispheres. A t  i t s  po in t  of maximum convergence the 

beam passes  through a small ape r tu re  which excludes most 

of the  i n c i d e n t  s u n l i g h t .  The beam then diverges 

s l i g h t l y  t o  be uniformly d i s t r i b u t e d  over the target 

s u r f a c e ( a  small segment bypasses the  t r i t i u m  t a r g e t  and 

f a l l s  d i r e c t l y  upon the charge spectrum a n a l y z e r ) .  

The s o l i d  s ta te  d e t e c t o r  i s  arranged t o  i n t e r c e p t  

the maximum number of deuterium produced alpha pa r t i c l e s  

without; i n t e r f e r i n g  w i t h  the incoming i o n  beam. 

I n  the p re sen t  concept, t he  deuterium deLector and 

charge spectrum analyzer  each has i t s  own separate and 

independent measurement chain consisLing of p reampl i f i e r ,  

amplifier,  and i n f r a r e d  s igna l  t r a n s m i t t e r .  However, 

s i n c e  power f o r  opera t ing  t h e  c i r c u i t s  i n s i d e  the  high 

p o t e n t i a l  she l l  w i l l  be a t  a premium, i t  may prove 

advantageous t o  allow p a r t s  of the c i r c u i t r y  t o  se rve  

both  instruments  by switching modes of opera t ion  e i t h e r  

a u t o n a t i c a l l y  o r  on command. The problem of supplying 

power t o  the  c i r c u i t s  ins ide  the high p o t e n t i a l  s h e l l  

has no t  y e t  been considered i n  d e t a i l .  I n  the  l abora to ry  

model of the  experiment a 6 v o l t  mercury c e l l  was used  

t o  supply the 30 mw of power r equ i r ed  f o r  these  c i r c u i t s .  



The high-voltage power supply and suppor t ing  

i n s u l a t o r s  are mounted w e l l  back from the hemispherical  

sur face  of the s h e l l  t o  minimize the i r  pe r tu rb ing  e f f e c t  

on the radial focusing f i e l d .  The power supply i t s e l f  

i s  mounted i n  the  rear of the c y l i n d e r  and i n  l i n e  wi th  

i t s  ax i s .  The work done so  f a r  i n  developing a power 

supply s u i t a b l e  f o r  space a p p l i c a t i o n  i n d i c a t e s  t h a t  

a u n i t  can be b u i l t  w i t h  s u f f i c i e n t  mechanical s t r e n g t h  

t o  support i t s  own weight and provide part  of the support  

f o r  the high p o t e n t i a l  she l l ,  e s p e c i a l l y  I n  the a x i a l  

d i r e c t i o n .  

This  completes the d e s c r i p t i o n  of the p r i n c i p l e s  

of operat ion of the instrument  and proposed concept f o r  

i t s  cons t ruc t ion .  The detai ls  of s i g n a l  processing,  

l og ic ,  memory, con t ro l ,  e t c .  w i l l  no t  be d iscussed  here 

as they are a l l  f a i r l y  r o u t i n e  ma t t e r s  i n  t h e  i n s t r u -  

mentation of space experiments and can b e s t  be considered 

i n  d e t a i l  i n  r e l a t i o n  t o  a s p e c i f i c  mission f o r  the  

experiment. 
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Chapter 111: A Prototype Model 

The major p a r t  of the experimental work on which t h i s  

t h e s i s  i s  based cons i s t ed  of bu j ld ing  and t e s t i n g  a 

prototype model of the  proposed instrument  which 

simulated,  as c l o s e l y  as p rac t i cab le ,  the design concept 

ou t l i ned  i n  the previous chapter.  The primary ob jec t ive  

of t h i s  work was t o  v e r i f y  the f e a s i b i l i t y  of the 

concept and t o  make prel iminary measurements of e f f i c i e n c y  

and r e s o l u t i o n .  I n  the  i n t e r e s t  of meeting t h i s  ob jec t ive  

i n  a reasonable l eng th  of time, many of the design 

problems which appeared t o  requi re  cons iderable  develop- 

mental work could not  be considered here. It should be 

stressed, the re fo re ,  that  t h i s  work i s  no t  intended t o  

r ep resen t  a f i n a l  design desc r ip t ion .  

3 .1  High Voltage Power Supply 

The s tandard  Cockroft-Walton capaci tor-diode 

c i r c u i t  was chosen as the  most  app ropr i a t e  method, i n  

t h i s  case,  f o r  genera t ing  high DC vol tage .  The c i r c u i t  

used  c o n s i s t s  of e i g h t  capacitor-diode stages rated a t  

10 k i l o v o l t s  DC per stage. 

peak-to-peak s i n u s o i d a l  

An o s c i l l a t o r  and step-up transformer provide the  d r iv ing  

It i s  dr iven  by a 10 k i l o v o l t  

vol tage a t  a frequency of 5 k c j s e c .  

vo l t age .  

a DC 

time 

more 

I n  i t s  p resen t  form the supply i s  capable of providing 

vol tage  of 80 kv. A shortage of components a t  the  

the supply was b u i l t  prevented the a d d i t i o n  of two 

s t ages  necessary f o r  100 kv. 
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The c a p a c i t o r s  used are unencapsulated barium 

t i t a n a t e  ceramics rated a t  2200 p f ,  10 kv DC (Sprague 706~3). 

These are small disc-shaped u n i t s  and are s tacked  toge the r  

a l t e r n a t e l y  wi th  disc-shaped aluminum corona shields 

t o  form a compact, s e l f - suppor t ing  column (F ig .  4 ) .  The 

capacitor-diode network c o n s i s t s  of two of t hese  columns 

adjacent  t o  one another  w i t h  the diodes connected between 

the  columns. The corona shields a l s o  serve  as t e rmina l s  

f o r  connecting the diode leads. 

The diodes used are 16 kv u n i t s  with axial  wire 

leads. ( S o l i t r o n  MC4-16). These are over ra ted  i n  

vol tage by 60 percent ,  b u t  p a s t  experience showed tha t  

the diodes must be cons iderably  over ra ted  i f  they are t o  

survive repea ted  surges .  

The e n t i r e  s t r u c t u r e  was encapsula ted  by dipping i n  

s i l i c o n e  rubber p o t t i n g  compound ( R T V - 1 1 ) .  

i n  vacuum t o  e l imina te  the p o s s i b i l i t y  of t rapped gas 

bubbles i n  the encapsula t ing  material. 

T h i s  was done 

The completed s t r u c t u r e  weighs 1089 grams. Much 

of t h i s  weight i s  due t o  the s o l i d  aluminum corona 

shields and could be reduced cons iderably  by c a r e f u l  

design. The approximate dimensions are 5 cm by 10 cm 

by 10 cm high. 

w i t h  an ear l ie r  model. 

Figure 3 shows t h i s  power supply compared 

The power requirement ( F i g .  13) is 3.4 t o  3.7 watts 

a t  80 kv depending on the p r e s s u r e  i n  the vacuum system 
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( 4  x t o  3 x T o r r ) .  Most of t h i s  power i s  due 

t o  t h e  d r i v e r  t ransformer which r e q u i r e s  a l a r g e  open 

c i r c u i t  charging cu r ren t .  

vo l tage  i s  1.8 kv o r  2.2 percent .  

A t  80 kv DC the r i p p l e  

The design and cons t ruc t ion  d e t a i l s  are descr ibed  

more completely i n  Appendix A .  

T h i s  power supply has given e x c e l l e n t  s e r v i c e .  

Over the p a s t  two months i t  has been operated a t  80 kv 

repea ted ly  i n  vacuum f o r  pe r iods  of up t o  several hours .  

It  has never su f fe red  a vol tage breakdown except  when 

high-vol tage breakdown i n  some o ther  par t  of the vacuum 

system induced a r c i n g  along i t s  ou te r  su r f ace .  It can 

withstand repea ted  surges  of t h i s  type, without the 

p r o t e c t i o n  of a cu r ren t - l imi t ing  c i r c u i t ,  and s u f f e r  

no apparent  ill e f f e c t s .  

Barium t i t a n a t e ,  however, may prove t o  be unsu i t ab le  

f o r  an a c t u a l  space a p p l i c a t i o n  because i t  has some 

undes i rab le  c h a r a c t e r i s t i c s .  I t s  d i e l e c t r i c  cons t an t  

(1200 a t  40°C) i s  q u i t e  temperature s e n s i t i v e .  Mechanically, 

barium t i t a n a t e  i s  a hard, b r i t t l e  substance which may 

ch ip  or shatter under v i b r a t i o n a l  t e s t i n g .  These f a c t o r s  

could e a s i l y  negate the advantages i t  o f f e r s  i n  design 

compactness and must be c a r e f u l l y  eva lua ted  i n  f u t u r e  

des igns .  The p o s s i b i l i t y  of us ing  capac i to r s  made of 

mica i s  p r e s e n t l y  being s t u d i e d .  



3.2 Ion Beam Focusing 

The concept, o u t l i n e d  i n  the previous chapter ,  of 

two c y l i n d r i c a l  she l l s  wi th  hemispherical  ends i s  used 

i n  t h i s  prototype t o  provide a r a d i a l  focusing f i e l d .  

The diameter of the o u t e r  (ground p o t e n t i a l )  s h e l l  

i s  1 2  inches,  while the i n n e r  s h e l l  i s  3 inches i n  

diameter. The c y l i n d r i c a l  p o r t i o n  of each of the she l l s  

is 6 inches long ( F i g s .  8 and 9 ) .  

The en t rance  g r i d  i n  the o u t e r  s h e l l  is made of 

64 percent  t r anspa ren t  sc reen  while the i n n e r  s h e l l  has 

a g r i d  formed by ho le s  d r i l l e d  i n  i t s  hemispherical  

sur face .  I t s  t ransparency is 26 pe rcen t .  

The i n n e r  she l l  i s  supported by f o u r  l u c i t e  insu-  

l a t o r s .  Since optimum focusing of t he  ion  beam was n o t  

considered important i n  t h i s  pro to type  model, no p rov i s ion  

was made t o  a l i g n  the  i n n e r  s h e l l  a c c u r a t e l y  and hold  

i t  i n  p l ace .  Separate  equipment i s  p r e s e n t l y  being 

assembled t o  conduct a thorough s tudy  of p a r t i c l e  

t r a j e c t o r i e s  and beam focusing w i t h  the radial  f i e l d  

conf igura t ion .  

A t  f i r s t  the  beam focusing s t r u c t u r e  would no t  

maintain the 80 kv a c c e l e r a t i n g  p o t e n t i a l  i n  vacuum. 

Breakdown occurred a t  vo l t ages  from 30 kv t o  55 kv and 

was always preceded by these symptoms: 

(1) a sharp inc rease  in c u r r e n t  t o  the power supply,  

( 2 )  a " l i m i t i n g "  e f f e c t  on the h igh  vo l t age ,  
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( 3 )  

(4) 

(5) 

a d i f f u s e  glow which sheathed the i n s u l a t o r s  and 

e l e c t r o d e  sur faces ,  

occasional  small poin ts  of i n t ense  l igh t  on the 

anode ( o u t e r  s h e l l )  and sometimes i n  remote 

parts of the vacuum system, 

l a r g e r ,  less in t ense ,  a r e a s  of l i g h t  around the 

base of the power supply and on the t e f l o n  s h e e t  

which supported i t .  

Once breakdown occurred, the  vacuum system seemed t o  

become contaminated as it  was then imposs ib le  t o  r a i s e  

the vol tage  a t  a l l  u n t i l  t he  system had been allowed t o  

recover  f o r  s e v e r a l  minutes. 

The mechanisms which cause vacuum breakdown are no t  

w e l l  understood. Breakdown s t r e n g t h  becomes r e l a t i v e l y  

independent of gap l eng th  f o r  gaps larger than about 

1 cm (Dl). 

i nc rease  i n  ion  exchange between p o s i t i v e  and negat ive  

e l e c t r o d e  su r faces  genera l ly  precedes vacuum vol tage  

breakdown ( B 2 ) ( M 1 ) .  Kofoid ( K 2 )  s t u d i e d  the e f f e c t  of 

e l e c t r o n  emission from the  negat ive e l e c t r o d e - d i e l e c t r i c  

j unc t ion  on the breakdown s t r e n g t h  of i n s u l a t o r s .  

Recent evidence i n d i c a t e s  that a r ap id  

The breakdown vol tage  of the beam focusing s t r u c t u r e  

was increased  s l i g h t l y  by reducing the area of con tac t  

between t h e  negat ive e l ec t rode  ( i n n e r  s h e l l )  and i t s  support ing 

i n s u l a t o r s .  I t  was found, however, tha t  a t h i n  coa t  of 

d i e l e c t r i c  ma te r i a l  over the i n s i d e  su r face  of the o u t e r  

she l l  (anode) e f f e c t i v e l y  e l imina ted  t h e  high vo l t age  



breakdown problem -- a t  least up t o  80 k i l o v o l t s .  

f i r s t  a sheet of t e f l o n  f i l m  was used and then  a baked- 

on coat of Durafilm High D i e l e c t r i c  Enamel. The t e f l o n  

performed w e l l  from the beginning, b u t  the enamel r equ i r ed  

a per iod of outgassing and condi t ion ing  by repea ted  

a rc ing  before  i t s  performance matched that  of t e f l o n .  

A t  

T h i s  technique i s  no t  proposed here as a f i n a l  

s o l u t i o n  t o  the high-voltage problem. 

the  hemispherical  p o r t i o n  of t he  o u t e r  she l l  i s  t o  

def ine a radial  f i e l d  f o r  beam focusing, and covering i t  

w i t h  a f i l m  of d i e l e c t r i c  tends t o  defeat t h i s  purpose. 

However i f  f u r t h e r  i n v e s t i g a t i o n  shows that  the f i e l d  

i s  not s e r i o u s l y  per turbed  by the d i e l e c t r i c  f i l m ,  then 

The purpose of 

I t h i s  could prove t o  be q u i t e  a va luable  technique.  

3.3 E lec t ron ic s  

The deuterium d e t e c t i o n  and charge spectrum 

a n a l y s i s  po r t ions  of t h e  experiment were tested s e p a r a t e l y .  

T h i s  was done t o  avoid the time-consuming job of l ay ing  

out and packaging both  c i r c u i t s  t o  f i t  t oge the r  i n s i d e  

the inner  she l l .  

The same e l e c t r o n i c s  package, with minor modi f ica t ions ,  

was used t o  t e s t  both  p a r t s  of the experiment. 

shows the  package adapted f o r  t e s t i n g  the deuterium 

de tec to r .  Included i n  the package are the p reampl i f i e r ,  

two s tages  of vo l tage  a m p l i f i c a t i o n ,  one s t a g e  of c u r r e n t  

Figure 6 
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ampl i f i ca t ion  and a gallium arsenide  i n f r a r e d  l i g h t  

source f o r  t r a n s m i t t i n g  the  s i g n a l s  t o  a pho tomul t ip l i e r  

tube a t  ground p o t e n t i a l .  

Because the capaci tance of  s o l i d  state d e t e c t o r s  i s  

s e n s i t i v e  t o  ambient condi t ions,  i t  i s  a s tandard  

technique t o  use a "charge s e n s i t i v e "  preamplifier w i t h  

them. Refer r ing  to Fig. 7 ,  t h e  p reampl i f i e r  c o n s i s t s  of 

the two cascode-connected input  t r a n s i s t o r s  (Ql and %) 
which d r i v e  an emit ter-fol lower output  stage ( Q  ) .  3 
Capaci t ive feedback (C, )  f rom the emitter of Q-. t o  the 

3 
base of Q1 ( i n p u t )  produces the "charge s e n s i t i v e "  

f e a t u r e .  T r a n s i s t o r  pairs  Q -Q and %-QI form two 

i d e n t i c a l  stages of vo l tage  ampl i f ica t ion ,  each with 
4 5  

negat ive  feedback. T rans i s to r s  Q8 and Q provide the 

c u r r e n t  ampl i f i ca t ion  necessary t o  d r i v e  the i n f r a -  
9 

red source.  Capaci tors  C2 and C shape the system 

frequency response by providing equal  i n t e g r a t i n g  and 

d i f f e r e n t i a t i n g  t i m e  constants  of one microsecond each. 

3 

The t o t a l  ga in  of the s y s t e m  can be expressed i n  

terms of  the i n f r a r e d  diode pulse  cu r ren t  per Kev of 

energy (of  a p a r t i c l e  i nc iden t  on the  s o l i d  state 

d e t e c t o r ) .  For operat ion as a charge spectrum analyzer ,  

the system g a i n  i s  ad jus t ed  t o  0 .1  ma per Kev and f o r  

the deuterium d e t e c t o r  i t  i s  about .O3 m a  p e r  Kev. 

The i n f r a r e d  source (Texas Instruments  SNX-100) i s  

forward b i a sed  a t  th ree  milliamps which i s  s u f f i c i e n t  



t o  make i t s  response e s s e n t i a l l y  l i n e a r .  This bias 

cur ren t  i s  no t  t empera tu re - s t ab i l i zed  in t h e  p r e s e n t  

model. The power requirement of the e n t i r e  c i r c u i t  is 

5 ma a t  6 v o l t s .  

sea led  i n  a vacuum-tight con ta ine r  ( s e e  Fig. 6 ) .  

This  I s  provided by a mercury c e l l  

Manufacturer ' s  s p e c i f i c a t i o n s  i n d i c a t e  that  the 

i n f r a r e d  source emits about 0.44 microwatts of o p t i c a l  

power per  m i l l i a m p  of j unc t ion  c u r r e n t  a t  2 5 O C .  

f i g u r e  inc reases  r a p i d l y  f o r  lower temperatures.  A 

measurement of the r a d i a t i o n  p a t t e r n  showed t h a t  the 

half-power beam width i s  43 degrees. The o p t i c a l  

response t o  a c u r r e n t  s t e p  of 10 milliamps was measured 

wi th  a pho tomul t ip l i e r  tube and showed a rise t i m e  of 

about 0.5 microseconds. Much f a s t e r  response has been 

obtained a t  h igher  c u r r e n t  l e v e l s .  

T h i s  

The preamplifier and i n f r a r e d  t ransmiss ion  system 

are discussed i n  more d e t a i l  i n  Appendix B. 

In  t h i s  model of t h e  experiment the i n f r a r e d  l i g h t  

s i g n a l  i s  beamed d i r e c t l y  t o  a pho tomul t ip l i e r  tube 

a t  ground p o t e n t i a l .  A s i g n a l  t ransmiss ion  system was 

b u i l t ,  however, which uses  a s o l i d  state p a r t i c l e  d e t e c t o r  

as the i n f r a r e d  sensor .  A d i e l e c t r i c  l i g h t  p ipe  is used 

t o  guide the i n f r a r e d  beam t o  the s e n s i t i v e  s u r f a c e  of 

t he  de t ec to r .  This technique w i l l  be s t u d i e d  I n  more 

d e t a i l ,  bu t  i t  appears  l i k e l y  t h a t  i t  w i l l  a l low the 

phototube t o  be e l imina ted  i n  f u t u r e  models of the 

experiment. T h i s  s u b j e c t  i s  d i scussed  fu r the r  i n  

Appendix B. 



The r e s o l u t i o n  of nuclear  p a r t i c l e  d e t e c t i o n  systems 

i s  u s u a l l y  s p e c i f i e d  i n  terms of the fu l l -wid th -a t -ha l f -  

maximum (FMIM) spread, due t o  system noise ,  i n  the out- 

pu t  spectrum. T h i s  f i g u r e  i s  given i n  u n i t s  of energy 

r e f e r r e d  to the system inpu t .  The noise  performance 

of charge-sens i t ive  preampl i f ie rs  f o r  s o l i d  s ta te  

p a r t i c l e  d e t e c t o r s  i s  degraded by adding e x t e r n a l  

capaci tance t o  the inpu t  terminals .  The r e l a t i o n s h i p  

between no i se  and e x t e r n a l  capaci tance i s  expressed as 

a func t ion  of capaci tance by a s t r a i g h t  l i n e  whose s lope  

( i n  Kev FWHM per p f )  and i n t e r c e p t  ( i n  Kev F”M) a t  ze ro  

e x t e r n a l  capaci tance are specified. The a m p l i f i e r  

b u i l t  f o r  t h i s  experiment has a FWHM no i se  of 2 0  Kev 

a t  zero  capaci tance and a slope of about .13 Kev p e r  p f .  

These f i g u r e s  do no t  account f o r  the  no i se  c o n t r i b u t i o n  

of the d e t e c t o r  i t s e l f ,  only the  degradat ion i n  a m p l i f i e r  

performance caused by the  capacitance of the d e t e c t o r .  

The i n f r a r e d  s i g n a l  t ransmission system d i d  no t  c o n t r i b u t e  

apprec iab ly  t o  the  noise  of the system. 

3.4 Charge Spectrum Analyzer 

The proposed techriique ~f charge spectrum a n a l y s i s  

was t e s t e d  wi th  a small-area, low-capacitance, high- 

r e s o l u t i o n  d e t e c t o r  w e l l  s u i t e d  f o r  low-energy p a r t i c l e  

d e t e c t i o n  (Ortec # 4-755A). 

Its r e s o l u t i o n  f o r  protons w a s  s p e c i f i e d  as 10 Kev 

FWHM a t  a bias of 25 v o l t s .  I n  t h i s  model of the 



experiment the d e t e c t o r  is b i a s e d  a t  only 4 v o l t s  by 

using the 6 v o l t  mercury c e l l  which powers t h e  amplifier.  

I t s  capacitance a t  4 v o l t s  bias is 80 pf which i n c r e a s e s  

the ampl i f i e r  no ise  from 20 t o  29 Kev FWHM. The t o t a l  

noise  of the system, inc luding  d e t e c t o r ,  was measured 

and found t o  be 36 Kev FWHM. The methods of c a l i b r a t i o n  

and noise measurement are d iscussed  i n  Appendix A.  

It i s  apparent  that  the p reampl i f i e r  i s  the dominant 

con t r ibu to r  t o  the system no i se .  Since i t  would be 

des i r ab le  t o  improve the system n o i s e  performance, 

a preampl i f ie r  using a f i e l d - e f f e c t  t r a n s i s t o r  as i t s  

inpu t  s t age  i s  being developed f o r  use i n  the charge 

spectrum a n a l y s i s  system. 

For  these  tes ts  the  d e t e c t o r  was mounted on the  

f r o n t  of  the  e l e c t r o n i c s  package i n  the p o s i t i o n  

occupied by the t r i t i u m  t a r g e t  ho lder  i n  the photograph 

(F ig .  6 ) .  No means f o r  c o n t r o l l i n g  the  counting rate, 

such as  the l i g h t  baff le  and a p e r t u r e  d iscussed  i n  the 

previous chapter ,  was inc luded  i n  t h i s  model of the 

experiment. To reduce the p a r t i c l e  f l u x  i n c i d e n t  on 

the d e t e c t o r  t o  a reasonable  value,  i t  was t h e r e f o r e  

necessary t o  seal of f  a l l  bu t  one hole  of t h e  g r i d  i n  the  

sur face  of t h e  i n n e r  she l l .  

3.5 Deuterium Detector  

Figure 6 shows the e l e c t r o n i c s  package wi th  the 

t r i t i u m  t a r g e t  and s o l i d  s ta te  d e t e c t o r  mounted. The 
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2 d e t e c t o r  used f o r  t h i s  test  was a 300 mm device wi th  a 

s p e c i f i e d  r e s o l u t i o n  of 90 Kev FWHM f o r  alpha p a r t i c l e s  

(Ortec # 4-815). The l a r g e  a rea  was necessary i n  t h i s  

case t o  i n t e r c e p t  as many of the deuterium-produced 

3.6 Mev alpha p a r t i c l e s  as poss ib le .  

This  d e t e c t o r  was a l s o  biased a t  f o u r  v o l t s .  The 

dep le t ion  depth f o r  t h i s  vol tage i s  90 microns which 

should completely s t o p  alpha p a r t i c l e s  w i t h  ene rg ie s  

up t o  about 12 M e V .  
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Chapter I V :  T e s t i n g  and Evaluat ion 

4 . 1  Experimental Procedure 

Figure 8 i s  a block diagram of the l a b o r a t o r y  set- 

up used f o r  t e s t i n g  and eva lua t ing  the  pro to type  model. 

Tests were c a r r i e d  out  i n  vacuum a t  p re s su res  of from 

4 x t o  3 x Torr .  The ion  beam was produced 

by a Vacuum E l e c t r o n i c s  Corporation Veetube ion  source.  

A d e f l e c t i n g  magnet i n  the i o n  source allowed s e l e c t i o n  

of the charge-to-mass r a t i o  of the beam. For t e s t i n g  

the deuterium d e t e c t o r  a pal.lad1um leak in t roduced  

c o n t r o l l e d  q u a n t i t i e s  of hydrogen or deuterium gas i n t o  

the ion  source.  The ion  beam produced by r e s i d u a l  gas 

i n  the vacuum system was s u f f i c i e n t  for t e s t i n g  the  

charge spectrum analyzer .  

Ion beam i n t e n s i t y  was measured w i t h  a Faraday cup 

which could be lowered i n t o  t h e  beam path by means of a 

s l i d i n g  seal .  Figures  10 and 11 show the ion  beam 

c u r r e n t  as a func t ion  of i o n  source a c c e l e r a t i n g  

p o t e n t i a l  (0-1000 v ) .  The s t rong  peaks i n  beam c u r r e n t  

correspond t o  d i f f e r e n t  values of charge-to-mass r a t i o .  

A s  explained i n  the previous chapter ,  ths pu l ses  

from the p a r t i c l e  d e t e c t o r  were t r ansmi t t ed  by an 

i n f r a r e d  l i g h t  beam from the i n n e r  s h e l l  a t  100 kv 

p o t e n t i a l  t o  a phototube a t  ground p o t e n t i a l .  The 

phototube output  was amplif ied by one emi t t e r - fo l lower  

stage before  passing out of the vacuum system. A mul t i -  

channel pu lse  he ight  analyzer  (100 t o  400 channels ) ,  
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osc i l loscope ,  and pu l se  counter  were used t o  analyze 

the output  s i g n a l s .  

The a c c e l e r a t i n g  p o t e n t i a l  was measured with a 

r e s i s t o r  vo l tage  d i v i d e r  c o n s i s t i n g  of two 30 kv, 

10 ohm RPC carbon f i l m  r e s i s t o r s  connected i n  series 

w i t h  a two-megohm r e s i s t o r  f o r  a d i v i d e r  r a t i o  of 

10 :l .  The d i v i d e r  output  was measured wi th  a high 

impedance vacuum tube vol tmeter .  

accura te  t o  wi th in  two percent  up t o  30 kv, b u t  could 

no t  b e  ca l ibra ted  a t  h igher  vo l t ages .  The high vol tage  

was con t ro l l ed  by a d j u s t i n g  t h e  inpu t  vo l t age  t o  the 

d r i v e r  c i r c u i t .  

11 

5 

The d i v i d e r  was 

4.2 Resolut ion of the Deuterium Detector  

One of the a s s e t s  of t h i s  method of deuterium 

de tec t ion  i s  t h a t  the unique energy of the alpha 

p a r t i c l e  a l lows s t rong  d i sc r imina t ion  a g a i n s t  extraneous 

events .  It was of i n t e r e s t ,  therefore, t o  measure the 

r e s o l u t i o n  a c t u a l l y  obtained w i t h  t h i s  model of the 

experiment. 

Some f a c t o r s  which can c o n t r i b u t e  t o  the lo s s  of 

r e s o l u t i o n  are: 

(1) energy l o s t  by the alpha p a r t i c l e  i n  escaping 

from the t a r g e t ,  

non-normal incidence of the a l p h a - p a r t i c l e s  on 

t h e  d e t e c t o r  su r face ,  

background no i se  genera ted  by the t a r g e t  rad io-  

a c t i v i t y .  

( 2 )  

( 3 )  
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A Po21o source,  producing 5.3 Mev alpha p a r t i c l e s ,  

was used t o  i n v e s t i g a t e  the loss of r e s o l u t i o n  due t o  

the t a r g e t  r a d i o a c t i v i t y  and the non-normal inc idence  

of a lpha  p a r t i c l e s  on the  de t ec to r  su r face .  Curve A of 

Fig.  12 shows the  5.3 Mev alpha spectrum for e s s e n t i a l l y  

normal p a r t i c l e  incidence and with no t r i t i u m  target i n  

the system. Curve B of Fig.  12 shows the spectrum 

obtained by moving the Po ‘lo source t o  produce g raz ing  

incidence and adding the  t r i t i u m  target .  

Figure 13 shows a t y p i c a l  pu lse  height  spectrum 

due to 3.6 Mev deuterium-produced alpha p a r t i c l e s  

( t h e  Po *lo source was included for c a l i b r a t i o n  purposes) .  

The spread i n  the  spectrum i s  600 Kev FWHM. 

To t e s t  for p o s s i b l e  background counts due t o  the 

target r a d i o a c t i v i t y ,  the Po ‘lo source was removed and 

the  ion  beam shut  o f f .  A t  a p o t e n t i a l  of 80 kv no  

counts  were observed during a pe r iod  of about 10 minutes.  

These r e s u l t s  lead t o  the fol lowing conclusions:  

A t r i t i a t e d  t a r g e t  of 1 c u r i e  a c t i v i t y  will no t  

cause background counts i n  a s i l i c o n  d e t e c t o r  

with a dep le t ion  depth of 90 microns. 

With th i s  t a r g e t  and de tec to r ,  3.6 Mev alphas 

produced by the D-T r eac t ion  can be reso lved  t o  

about 0.6 MeV. 

Most of the l o s s  of r e so lu t ion  i s  due t o  t a r g e t  

a c t i v i t y  and non-normal incidence of p a r t i c l e s  

on the  d e t e c t o r  su r face .  
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Due t o  the  complete i s o l a t i o n  a f fo rded  by the 

i n f r a r e d  light-beam method of s i g n a l  coupling, the 80 kv 

power supply had no observable e f f e c t  on the measurement 

chain e l e c t r o n i c s ,  and hence, no e f f e c t  on the  r e s o l u t i o n .  

4 . 3  Deuterium Detector  E f f i c i ency  

The e f f i c i e n c y  of t he  instrument ,  i n  terms of counts 

per i n c i d e n t  deuteron, was determined by measuring the 

counting r a t e  produced by a known f l u x  of deuterons 

inc iden t  on the  ou te r  g r i d  of the instrument .  The 

percentage of deuterium i n  the ion  beam (Table I )  was 

estimated by measuring beam c u r r e n t  with and without  t h e  

palladium leak on. 

were made a f t e r  a l lowing the  beam t o  reach  a s teady  

A l l  measurements of beam c u r r e n t  

e qui1 i b r  ium . 
Counting r a t e  measurements were made f o r  bo th  

atomic and molecular deuterium ions  a t  ene rg ie s  of f rom 

40 Kev t o  80 Kev. The r e s u l t s  f o r  molecular deuterium 

have n o  d i r e c t  s i g n i f i c a n c e ,  as molecular deuterium i s  

n o t  l i k e l y  t o  e x i s t  i n  the s o l a r  wind, bu t  were included 

t o  check the  consis tency of the measurements. A s  would 

be expected, the y i e l d  rates f o r  D: i ons  are much lower 

than those f o r  D+ a t  the same a c c e l e r a t i n g  vo l t age  because 

each deuteron i n  the  D: molecule has only  half the t o t a l  

energy of the  ion .  

The r e s u l t s  a r e  t a b u l a t e d  i n  Table 11. The 

e f f i c i e n c y  i n  counts per D+ and counts  per  DZ is p l o t t e d  

as a func t ion  of a c c e l e r a t i n g  p o t e n t i a l  I n  F ig .  1 4 .  
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TABLE I 

EFFICIENCY OF' DEUTERIUM DETECTOR 

P o t e n t i a l  Ion 
(WJ 

80 

70 

60 

80 

70 
60 

50 
40 

Beam 
Curr  t 

( x10-'8A) 

5.40 

4.95 
4.20 

1-95  

1 -93  
1.92 

1.90 

1.87 

Counts Counts pe r  
P e r  I n c i d e n t  Ion 

100 sec (x 10-8) 

811 0.233 
353 0.111 

12 8 0.0475 

1248 1.33 

719 0.775 
380 0.412 

163 0.179 

50 0.056 

TABLE I1 

DEUTERIUM CONTENT OF ION BEAM 

Ion Energy ( e v )  310 
(See Fig.  10) 

Beam Current (Amps) 
(Pzlladiurn l e a k  o f f )  

-11 4 .8  x 10 

-10 1.85 x 10 -10 Beam Current (Amps) 6.2 x i o  
(Pal ladium l e a k  on) 

Percent  D+ ions  0 75 

Percent  D: i ons  100 0 



These r e s u l t s  were used t o  measure the r e l a t i v e  

abundance of deuterons i n  ord inary  hydrogen gas. 

Figure 11 shows the ion  source output  w i t h  H2 gas i n  

the source.  The ion  beam conta i rx ideuter ium i n  t h e  

forms HD' and D' ( t h e  amount of D+ is n e g l i g i b l y  small). 
2 

The re la t ive  abundance of deuterium i n  ord inary  

hydrogen w a s  measured i n  the fol lowing way: 

(1) The t o t a l  ion  source output  was estimated from 

the  graph of output c u r r e n t  v s  a c c e l e r a t i n g  vo l t age  ( F i g .  11). 

Counting r a t e s  a t  80 kv were measured a t  the HD' ( 2 )  

and Dt peaks of t h e  ion  source output .  

observed except a t  these  peaks. 

No counts were 

-8 (3) The previous ly  measured e f f i c i e n c y  of 1 .3  x 10 

counts per D' was used t o  compute the amount of D+ i n  

the beam. 

(4) The measured e f f i c i e n c y  of 0.23 x lo-' counts 

per  DZ was co r rec t ed  by a f a c t o r  of 0.5 and used t o  

compute the  amount of HD' i n  t h e  beam. 

( 5 )  The r e l a t i v e  abundance of deuterium was taken t o  

be the sum of the amounts of D' and HD' div ided  by the 

t o t a l  o u t p u t  of t he  ion  source.  T h i s  procedure y i e l d e d  

a value of 2 x f o r  the r e l a t i v e  abundance of 

deuterium. Since the known value i s  1 . 4  x t h i s  

r e s u l t  i n d i c a t e s  t ha t  the measured e f f i c i e n c i e s  are 

accura te  t o  w i t h i n  the  experimental  u n c e r t a i n t y .  

Note t h a t  the  e f f i c i e n c y  measured f o r  the deuterium 

d e t e c t o r  is expressed i n  terms of counts  per D' i n c i d e n t  
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was 1 curie, but its atomic ratio of tritium to zirconium 

and thickness were not known. It had been in storage 

f o r  about one year before being used in this investigation. 
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4.4 Charge Spectrum Analyzer 

It was important t o  eva lua te  the low-energy p a r t i c l e  

r e s o l u t i o n  which could be obtained wi th  t h i s  d e t e c t o r  

and amplifier.  T h i s  was done by observing the pulse  

he igh t  spectrum produced by an ion  beam i n c i d e n t  on 

the su r face  of the  d e t e c t o r  a t  a negat ive  p o t e n t i a l  of 

80 k v .  The r e s u l t s  are of l imi t ed  value,  however, 

because the ion  source used f o r  t h i s  t e s t  did not  

produce an apprec iab le  number of mu l t ip ly  ion ized  p a r t i c l e s .  

Figure 15 shows a t y p i c a l  pu l se  he ight  spectrum 

obtained a t  an a c c e l e r a t i n g  p o t e n t i a l  of 80 kv. T e s t s  

were made a t  s e v e r a l  values  of ion  beam charge-to-mass 

r a t i o ,  inc luding  those which correspond t o  s ing ly-  

charged oxygen and carbon ions, b u t  a l l  pu lse  height 

s p e c t r a  were e s s e n t i a l l y  the same as t h a t  i n  Fig.  15. 

The s lope  on the high-energy s ide of the pulse  

height spectrum i n d i c a t e s  that t h e r e  may have been a 

f e w  doubly ion ized  p a r t i c l e s  present  which could no t  be 

r e so lved  i n t o  a peak by t h i s  instrument .  It i s  apparent  

that the p resen t  r e s o l u t i o n  i s  n o t  adequate.  Inc reas ing  

the bias vol tage  of the de tec to r  would have r e s u l t e d  i n  

some improvements, bu t  because most of the system no i se  

was due t o  the p reampl i f i e r  input  s t age ,  no attempt was 

made t o  optimize the de tec to r  bias vo l t age  i n  t h i s  

instrument  . 
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The peak i n  t he  s o l a r  wind charge spectrum due t o  

protons i s  expected t o  be much greater than  the peak due 

t o  doubly ion ized  p a r t i c l e s .  If t h e  system n o i s e  i s  

assumed t o  be Gaussian, t h e  normal d i s t r i b u t i o n  func t ion  

can be used t o  e s t ima te  t h e  FWHM r e s o l u t i o n  r equ i r ed  

t o  measure the number of doubly ion ized  p a r t i c l e s  t o  an 

accuracy of one pe rcen t  i n  the presence of a large 

proton f l u x .  Table I11 shows the va lues  of equ iva len t  

FMlM noise  c a l c u l a t e d  for s e v e r a l  assumed r a t i o s  of 

doubly ion ized  p a r t i c l e s  t o  pro tons .  The computations 

are given in Appendix B. 

TABLE I11 

N++/N+ 

10-1 

lo-2 
10-3  

FWHM Noise FWHM Noise 
i n  Kev i n  Kev 

(80 kv p o t e n t i a l )  (100 kv p o t e n t i a l )  

32 ' 9 

29.6 

27.3 

26.9 
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These va lues  i n d i c a t e  that the 36 Kev FWHM no i se  

of the p r e s e n t  instrument  i s  marginal, b u t  a f i g u r e  of  

25 Kev FWHM should be e n t i r e l y  adequate.  It would be 

d e s i r a b l e  t o  achieve a lower f igu re  than t h i s ,  however, 

t o  a l low for the gradual  degradation of d e t e c t o r  

performance due t o  r a d i a t i o n  damage (D2). 

A t o t a l  system r e s o l u t i o n  of 25 Kev FWHM would be 

d i f f i c u l t  t o  achieve with a t r a n s i s t o r  preamplifier, 

a l though i t  may be poss ib l e  (F2). However, much lower  

no ise  f i g u r e s  ( 3  t o  5 Kev FWHM) have been quoced f o r  

p reampl i f i e r s  using f i e l d - e f f e c t  t r a n s i s t o r s  i n  the  

i n p u t  s t age  (F2, B l ) .  An a m p l i f i e r  of t h i s  type i s  

p r e s e n t l y  being developed f o r  use i n  the charge spectrum 

analyzer .  
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Appendix A: The High Voltage Power Supply 

A l .  F i e l d  Configurat ion 

Due t o  large p o t e n t i a l  g rad ien t s  a s s o c i a t e d  w i t h  

small r ad i i  of curvature ,  g r e a t  c a r e  must be taken i n  

high v o l t a g e  design t o  e l imina te  sharp edges, p o i n t s  o r  

rough su r faces .  I n  vacuum, g rad ien t s  on the order  of  

10 v o l t s  per  meter can cause co ld  f i e l d  emission from 

negat ive  e l e c t r o d e  s u r f a c e s .  F i e l d  emission is thought, 

i n  many cases ,  t o  be the f i r s t  s t ep  i n  the chain of  

even t s  which leads t o  complete vol tage  breakdown of the  

vacuum gap (Ml) . 

8 

These problems were encountered r epea ted ly  in the 

cons t ruc t ion  of  a nega t ive  100 kv supply f o r  an e a r l i e r  

experiment (see Fig .  3 ) .  The aluminum d i s c s  (corona 

sh i e lds )  i n  the p resen t  power supply (F ig .  4 )  are 

designed t o  shield the parts of the s t r u c t u r e  which 

could otherwise genera te  l a rge  vol tage  g r a d i e n t s .  I n  

p a r t i c u l a r , t h e  metal f i l m  e l ec t rodes  on each of the 

c a p a c i t o r s  are shielded by mounting the c a p a c i t o r  i n  a 

shallow c i r c u l a r  depression i n  t h e  corona shield su r face .  

T h i s  provides  a s l i g h t  overhang which p l aces  the edge 

of t he  c a p a c i t o r  i n  a region of e s s e n t i a l l y  cons t an t  

p o t e n t i a l .  The p o i n t s  where diode leads are connected 

are a l s o  sh i e lded  by being recessed i n t o  the su r face  

of the corona shield.  
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A 2 .  Construct ion 

The barium t i t a n a t e  c a p a c i t o r s  used f o r  t h i s  power 

supply were unencapsulated disc-shaped u n i t s  1 inch  i n  

diameter and 5/16 inch  th i ck .  

capac i to r  s t a c k s  each cons i s t ed  of n ine  corona sh i e lds  

and e i g h t  capac i to r s  cemented toge the r  w i t h  conducting 

epoxy (Alaco Conducting 20-20) t o  form a column. The 

16 kv diodes were then connected between t h e  appropr i a t e  

corona sh ie lds  i n  each column by p r e s s  f i t t i n g  the wire 

leads  i n t o  ho le s .  Each lead was cemented i n  p lace  w i t h  

a drop of conducting epoxy, c a r e  being taken t o  prevent  

t h e  excess epoxy from pro t ruding  above the smooth su r face  

of the corona shield.  A t  t h i s  p o i n t  t h e  two c a p a c i t o r  

columns were he ld  toge the r  by 16 d iodes ,  8 on each side. 

To r e l i e v e  the  mechanical stress on the  diode leads, 

the  s t r u c t u r e  was then cemented t o  a r i g i d  base ( F i g .  4 ) .  

The two ser ies -connec ted  

The completed s t r u c t u r e  was f i r s t  tes ted i n  

i n s u l a t i n g  o i l  where i t  reached i t s  r a t e d  vo l t age  of 

80 kv. When tes ted i n  vacuum, however, each s t a g e  would 

support only 3 t o  4 kv,although the c a p a c i t o r s  were each 

rated a t  10 kv. This  confirmed the  r e s u l t  of an ea r l i e r  

t e s t  i n  which ind iv idua l  unencapsulated c a p a c i t o r  u n i t s  

t e s t e d  i n  vacuum would break down along the su r face  a t  

about 4 kv while those t e s t e d  i n  o i l  o r  s i l i c o n e  rubber 

would e a s i l y  s t and  rated vo l t age .  

The e n t i r e  capaci tor-diode s t r u c t u r e  of the  power 

s u p p l y  was encapsulated i n  RTV-11 s i l i c o n e  rubber  p o t t i n g  
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compound. The dipping method of encapsula t ion  was chosen 

t o  minimize the q u a n t i t y  of rubber  on the  supply which 

la ter  would have t o  be cured. To prevent  the p o s s i b i l i t y  

of vo ids  i n  the rubber, the  complete dipping opera t ion  

was c a r r i e d  out i n  vacuum. 

Two dippings were required t o  produce a s u f f i c i e n t l y  

t h i c k  coa t  of rubber.  Each coat was cured f o r  several 

days a t  50°C. Af te r  the second cur ing  pe r iod , the  rubber 

was allowed t o  outgas i n  vacuum f o r  s e v e r a l  more days 

before  the power supply was t e s t e d .  

When tested, i t  achieved i t s  rated vol tage  of 80 kv 

without  d i f f i c u l t y ,  showing none of the c h a r a c t e r i s t i c  

symptoms a s soc ia t ed  w i t h  vacuum breakdown. 

Table I V  g ives  a breakdown, by weight, of the  

components i n  the capaci tor-diode s t r u c t u r e .  

TABLE IV 

Component 

Capaci tor  

Diode 

Corona sh ie ld  

Po t t ing  c omp ound, 
Base, Epoxy, e t c .  

Unit  Weight Number To ta l  Wei h t  
(grams 1 ( grams B 
19.2 16 307 2 

4.1 16 49.6 

15.9 18 286.2 

446.0 

TOTAL 1089 
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A 3 .  Problems 

The most  s e r i o u s  d i f f i c u l t y  encountered with t h i s  

supply was the  low mechanical s t r e n g t h  of the barium 

t i t a n a t e  capac i to r s .  After the supply had been assembled, 

bu t  before  i t  had been encapsulated,  three of the ceramic 

capac i to r s  were chipped o r  broken and r equ i r ed  r ep lace -  

ment. The supply had been cleaned s e v e r a l  times i n  an 

u l t r a s o n i c  ba th  and i t  was suspected t h a t  t h i s  had 

caused a t  l e a s t  two of the  c a p a c i t o r  f a i l u r e s  by e x c i t i n g  

resonant v i b r a t i o n s  i n  the columns which shattered the 

capac i tors .  

The a x i a l  wire l eads  on t h e  16 kv diodes were another  

source of  t roub le .  These wire leads were no t  sh i e lded  

from high p o t e n t i a l  g r a d i e n t s  where they en te red  the  diode.  

The l a rge  e l e c t r i c a l  stresses e x i s t i n g  around these 

leads were made ev ident  by the  f a c t  t h a t  the s i l i c o n e  

rubbe r  on three of the l eads  was punctured when the 

power supply experienced heavy a r c i n g  along i t s  ou te r  

sur face  during the  e a r l y  t e s t i n g  of the f i e l d  focusing 

s t r u c t u r e .  Fo r tuna te ly  these  punctures  d id  no t  e f f e c t  

the operat ion of the supply. 

A 4 .  Recommendations 

This power supply was b u i l t  only t o  a l l o w  the labora-  

t o r y  t e s t i n g  of t he  deuterium d e t e c t o r  and charge spectrum 

analyzer .  It f u l f i l l e d  t h i s  purpose very  s a t i s f a c t o r i l y  

and a l s o  provided some Valuable experience i n  the f i e l d  



of vacuum high-voltage engineering. Nevertheless ,  i t  i s  

no t  intended t o  r ep resen t  t he  answer t o  the high-vol tage 

problem f o r  t h i s  experiment. 

A s u i t a b l e  power supply design f o r  space a p p l i c a t i o n  

must be eva lua ted  i n  terms of:  

(1) weight 

( 2 )  volume 

( 3 )  t o t a l  power and e f f i c i e n c y  

( 4 )  r e l i a b i l i t y  

( 5 )  temperature s e n s i t i v i t y  

( 6 )  mechanical s t r e n g t h  

( 7 )  r e g u l a t i o n  

(8)  r ipp le .  

Because of the e s s e n t i a l l y  no-load opera t ing  condi t ion ,  

the e f f i c i e n c y  and r egu la t ion  are less important than 

the o the r  f a c t o r s .  The r i p p l e  must be eva lua ted  because 

i t  w i l l  tend t o  reduce the  charge spectrum r e s o l u t i o n .  

I n  designing the present  supply, t h e  value of 10 kv 

p e r  stage was chosen t o  be compatible w i t h  a given 

d r i v e r  t ransformer.  I n  f u t u r e  designs,  however, the 

first s tep  should be t o  s t u d y  var ious  p o s s i b l e  d r i v e r  

t ransformers  i n  terms of power consumption, weight, and 

volume as func t ions  of maximum output vo l tage .  T h i s  

should determine an optimum value of vol tage-per-s tage,  

and the re fo re  the t o t a l  number of stages requi red .  

The use of mica capac i to r s  t o  r ep lace  the ceramic 

c a p a c i t o r s  has been considered b r i e f l y  and appears  
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a t t r a c t i v e  f o r  f u t u r e  designs.  Severa l  manufacturers 

custom-design capac i to r s  of pressed mica f o r  s p e c i a l  

app l i ca t ions .  It seems that  an i n t e g r a t e d  c a p a c i t o r  

column should be p o s s i b l e .  

The diodes used i n  f u t u r e  designs should be ordered 

with s p e c i a l  ant i -corona sh i e lds  t o  a l l e v i a t e  the problems 

due t o  t he  wire leads. It  i s  a l s o  recommended tha t  

these diodes be over ra ted  i n  vo l t age  as t h i s  helps t o  

p ro tec t  them a g a i n s t  damage due t o  surges. 

The s i l i c o n e  rubber, R T V - 1 1 ,  seems t o  be a 

s a t i s f a c t o r y  i n s u l a t i n g  material f o r  vacuum high-vol tage 

app l i ca t ion .  Repeated a r c i n g  along i t s  su r face  d i d  no t  

damage it  i n  any way and i t  appeared t o  s t o p  outgassing 

appreciably a f te r  an  i n i t i a l  condi t ion ing  pe r iod .  

Unlike the LTV s e r i e s  of s i l i c o n e  compounds used i n  

e a r l i e r  a t tempts ,  R T V - 1 1  adhered w e l l  t o  smooth su r faces .  



Appendix B: E lec t ron ic s  

B1. Amplif ier  

The ob jec t  of the "charge s e n s i t i v e "  p r e a m p l i f i e r  i s  

t o  make the input  capaci tance of t he  p reampl i f i e r  much 

greater than the  d e t e c t o r  capaci tance.  Var i a t ions  i n  

d e t e c t o r  capaci tance due t o  ambient condi t ions  or changes 

i n  bias vol tage  then do n o t  a f f e c t  the output  s i g n a l  

amplitude.  The output vo l tage  o f  a charge s e n s i t i v e  

a m p l i f i e r  i s  given by 

where V, i s  the  output s igna l  amplitude,  Qi i s  the 

charge depos i ted  on the  inpu t  te rmina l ,  and Cy i s  the 

feedback capac i to r .  ( T h i s  expression assumes i n f i n i t e  

frequency response . )  This approximation holds  i f  the 

open loop vol tage  ga in ,  Av i s  nega t ive  and meets the 

cond i t ion  

The inpu t  capaci tance of the a m p l i f i e r  i s  g iven  by 

Ci = Cio + ( A v  + l ) C f  

where Cio i s  the inpu t  capacitance of' the  amplifier with  

feedback loop open. I n  the common e m i t t e r  conf igu ra t ion  

i s  dominated by the ' 'Mil ler  e f f e c t , "  which inc reases  

the  collec'cor-base capacitance,  C b c ,  by a f a c t o r  equal  

t o  t h e  vol tage  ga in  of t he  t r a n s i s t o r .  The cascode 

connection used i n  the  input  stage of t h i s  preamplifier 



e l imina te s  the  Miller e f f e c t  by holding the c o l l e c t o r  

of the input  t r a n s i s t o r  a t  an e s s e n t i a l l y  cons t an t  

vol tage ( E l ) .  

approximately equal  t o  cbc, which i s  much l e s s  than  

I n  t h i s  way Cio i s  he ld  t o  a value 

so AvCf , 
c i s  AvCf 

The no i se  performance of the p reampl i f i e r  i s  

con t ro l l ed  t o  a large e x t e n t  by i t s  frequency response.  

The purpose of the  c a p a c i t o r s  C1 and C2 ( F i g .  7 )  is t o  

shape t h e  frequency response of the system t o  produce 

a maximum s igna l - to -no i se  r a t i o .  The optimum performance 

f o r  most  t r a n s i s t o r s  i s  obtained a t  equal  i n t e g r a t i n g  

and d i f f e r e n t i a t i n g  time cons t an t s  of 1 microsecond ( E l , F 2 ) .  

T h i s  places  the c e n t e r  of the a m p l i f i e r  passband a t  about 

With t h i s  frequency response,  the p reampl i f i e r  

produces an exponent ia l ly  r i s i n g  and f a l l i n g  pu l se  whose 

peak amplitude i s  

While i t  improves the g a i n  s t a b i l i t y ,  the l a r g e  inpu t  

capacitance of the p reampl i f i e r  decreases  the s i g n a l -  

to-noise r a t i o  because i t  does n o t  reduce the no i se  

vol tage t o  the same degree that  i t  does the s i g n a l  vo l tage .  

For t h i s  reason, the p reampl i f i e r  used f o r  low energy 

p a r t i c l e  d e t e c t i o n  i n  the charge spectrum ana lyze r  was 

designed t o  have an inpu t  capac i tance  approximately 



equal  t o  the d e t e c t o r  capaci tance.  Figure 19 shows that  

the inpu t  capaci tance of t he  preampl i f ie r ,  with a 2pf 

feedback capac i to r ,  is about 50 pf .  Since the d e t e c t o r  

capaci tance is 80 pf a t  4 v o l t s  bias, t h i s  a m p l i f i e r  

cannot be considered "charge s e n s i t i v e "  i n  the t r u e  sense 

of the  word. 

B2. C a l i b r a t i o n  and Noi se  Measurement 

The equ iva len t  no ise  of the system i s  def ined  a s  

the energy of a p a r t i c l e  which would produce a vol tage  

s i g n a l  of peak amplitude exac t ly  equal  t o  the  system 

RMS no i se  vol tage .  From the normal d i s t r i b u t i o n  func t ion  

the FWHM (full-width-at-half-maximum) no i se  i s  found t o  

be 2.35 times the equiva len t  no ise .  The FWHM f i g u r e  i s  

g e n e r a l l y  used i n  the l i t e r a t u r e .  

I n  the  dep le t ion  reg ion  of a s i l i c o n  d e t e c t o r ,  one 

e l ec t ron -ho le  p a i r  is c rea t ed  f o r  each 2.35 ev of energy 

l o s t  by a charged p a r t i c l e  passing through the reg ion .  

Th i s  f i g u r e  is r e l a t i v e l y  independent of the  spec ie s  of 

i o n i z i n g  p a r t i c l e  or i t s  t o t a l  energy over a wide range 

of ene rg ie s  (01 ) .  If t h e  deple t ion  region is t h i c k  

enough t o  compieteiy s t o p  the  particle, the s i g n a l  i s  

d i r e c t l y  p ropor t iona l  t o  the  t o t a l  p a r t i c l e  energy 

over a wide range of n o n - r e l a t i v i s t i c  v e l o c i t i e s .  

The s tandard  method f o r  c a l i b r a t i n g  s o l i d  s ta te  

p a r t i c l e  d e t e c t o r  systems i s  t o  depos i t  on the i n p u t  

t e rmina l  an amount of charge equ iva len t  t o  a s p e c i f i e d  
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p a r t i c l e  energy. For a 100 kv p a r t i c l e  t h e  equ iva len t  

charge i s  (1O5)(2.35-l)(l.6 x lo-’’) = 4.6 x 

The equ iva len t  charge i s  depos i ted  i n  a t i m e  i n t e r v a l  

s h o r t  compared w i t h  the a m p l i f i e r  rise t i m e  by connect- 

ing a square wave gene ra to r  or mercury p u l s e r  t o  the 

a m p l i f i e r  i npu t  through a small c a p a c i t o r .  I n  t h i s  case 

a l m v  square wave, produced by a vo l t age  d i v i d e r ,  and a 

5 p f  capac i to r  provided a c a l i b r a t e  s i g n a l  of about 

5 x 10 -I5 coul .  - roughly equ iva len t  t o  108 kev. 

coul .  

To measure the noise  due t o  the  amplif ier  a lone,  

the d e t e c t o r  i s  rep laced  by an equ iva len t  c a p a c i t o r  

and a pulse  he ight  spectrum i s  taken of the system out-  

put w i t h  the  c a l i b r a t e  s i g n a l  as an inpu t .  

height ana lyzer  has f i r s t  been c a l i b r a t e d  i n  kev per 

channel, the FWHM no i se  can be taken d i r e c t l y  from the 

spectrum (F ig .  2 3 ) .  The d e t e c t o r  can then be rep laced  

and the  process  repeated t o  measure the t o t a l  system 

noise .  Since the d e t e c t o r  and a m p l i f i e r  no ise  sources  

are independent, the t o t a l  system no i se  should be given by 

I f  the pu l se  

where NS i s  the  t o t a l  system source and ND and NA the 

de tec to r  and a m p l i f i e r  n o i s e s .  

Figure 18 is a p l o t  of amplif ier  no i se  versus  

ex te rna l  capaci tance.  F igure  17 i s  a p l o t  of the 

de tec to r  capaci tance versus  bias vol tage .  It can be 
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seen from these two p l o t s  that a d e t e c t o r  bias of 4 v o l t s  

i s  ha rd ly  an optimum value.  It was chosen, however, t o  

e l imina te  the need f o r  another  b a t t e r y  i n s i d e  the high 

p o t e n t i a l  shel l .  

Figure 23  shows a t y p i c a l  pu l se  he igh t  spectrum 

obtained wi th  c a l i b r a t e  s i g n a l s  equ iva len t  t o  100 kev 

and 200 kev. The FWHM no i se  is seen t o  be 36 kev. This  

inc ludes  the d e t e c t o r  noise .  The inf ra red  s i g n a l  

t ransmission system d i d  no t  con t r ibu te  apprec iab ly  t o  

the t o t a l  system noise .  

B3. Resolut ion for Charge Spectrum Analysis 

me t o  t h e  expected predominance of protons i n  the 

s o l a r  wind, the peak i n  the charge spectrum corresponding 

t o  s i n g l y  charged p a r t i c l e s  should be l a r g e  compared t o  

the  peaks f o r  mul t ip ly  charged p a r t i c l e s .  The normal 

d i s t r i b u t i o n  func t ion  can be used t o  estimate the reso-  

l u t i o n  r equ i r ed  t o  reso lve  the  doubly-charged peak out  

of the " t a i l "  of t he  s i n g l y  charged peak. 

T h e  s i n g l y  charged peak can be represented  by 

where n1 = number of p a r t i c l e s  per u n i t  energy 

N1 = t o t a l  number of s i n g l y  charged p a r t i c l e s  

= s tandard  devia t ion  i n  kev of peak due t o  

s i n g l y  charged p a r t i c l e s  

E = energy i n  kev 

Eo= average energy In kev ( a c c e l e r a t i n g  p o t e n t i a l )  
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I n  the same way the doubly charged peak i s  r ep resen ted  by 

The s tandard dev ia t ions ,  al and a2, are due t o  a combination 

of system noise ,  r i p p l e  on the power supply, and the 

random i n i t i a l  ene rg ie s  of the ions  e n t e r i n g  through the 

sampling g r i d .  To count 99 percent  of the doubly 

ion ized  p a r t i c l e s , t h e  lower d i s c r i m i n a t o r  l e v e l  f o r  the 

second peak should be a t  about ( 2 E o  - 2.6 0 2 ) .  

The condi t ion  imposed now i s  t h a t  the number of 

counts above th i s  d i s c r i m i n a t o r  l e v e l  due t o  s i n g l y  

charged ions  be less than one percent  of the t o t a l  

number of doubly charged ions .  Assuming a1 and a2 

are equal, t h i s  i s ,  

m s 
( 2d0-2. 60) 

*1 
p a  

dE 4 . 01N2 

I n  terms of the  t a b u l a t e d  normal d i s t r i b u t i o n  func t ion  

t h i s  i s  

where xo = (2 - 2 .6 )  

Now f o r  an assumed value of N2/N1, xo can be found 

from the  tables. Then the FWHM no i se  r equ i r ed  f o r  a 

given acce le ra t ing  p o t e n t i a l  can by found from 



Table I11 g i v e s  the  c a l c u l a t e d  va lues  of a l lowable FWHM 

noise  i n  Kev f o r  s e v e r a l  values of N2/N1 f o r  a c c e l e r a t i n g  

p o t e n t i a l s  of 80 kv and 100 kv. 

B4. I n f r a r e d  S igna l  Coupling 

As mentioned i n  Chapters I11 and I V Y  a photo- 

m u l t i p l i e r  tube was used i n  t h i s  model of the experiment 

t o  serve  as a r e c e i v e r  f o r  the  i n f r a r e d  s i g n a l  t r a n s -  

mission system. Since i t  would be desirable t o  r ep lace  

the  phototube w i t h  a smal le r ,  less f r a g i l e  device,  t h e  

p o s s i b i l i t y  of using a s o l i d  state l i g h t  sensor  was 

inves t iga t ed .  The LSX-400 (Texas Instruments  Corp.) ,  

whose s p e c t r a l  response curve most n e a r l y  matches the 

G a A s  diode emission spectrum, had a r i se  t i m e  which 

was much too  long t o  make i t  s u i t a b l e .  

The LSX-400 w a s  replaced by a 25 mm2 s o l i d  s t a t e  

p a r t i c l e  d e t e c t o r  of the same type as used for the  

charge spectrum analyzer .  The d e t e c t o r  responded we l l  

t o  the 0.9 micron wavelength r a d i a t i o n  emi t ted  by G a A s  

and showed a rise time of abou t  4 microseconds. Figure 2 1  

shows the d e t e c t o r  DC cur ren t  as a func t ion  of d e t e c t o r  

bias vo l t age  and G a A s  diode c u r r e z t .  T h i s  curve was 

p l o t t e d  using a f l e x i b l e  f i b e r o p t i c s  l i g h t  pipe t o  

guide the l i g h t  beam t o  the s e n s i t i v e  su r face  of the 

d e t e c t o r .  

With a vol tage ampl i f i e r  on the i n f r a r e d  d e t e c t o r ,  

t h i s  system worked as well as the  pho tomul t ip l i e r  tube.  
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It was no t  used i n  t e s t i n g  t h e  deuterium d e t e c t o r  and 

charge spectrum analyzer ,  however, because t h e  f l e x i b l e  

l i g h t  pipe would no t  support  the 80 kv a c c e l e r a t i n g  

p o t e n t i a l .  

These r e s u l t s  are pre l iminary  a t  best ,  b u t  are 

mentioned here  because they  seem t o  warrant  f u r t h e r  

i nves t iga t ion .  
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